
J .  Fluid Me&. (1975), vol. 68, part 2 ,  pp .  389-401 

Printed in Great Britain 
389 

The transmission of deep-water waves 
across a vortex sheet 

By D. V. EVANS 
Department of Mathematics, University of Bristol, England 

(Received 0 November 1973 and in revised form 10 September 1974) 

The effect on an obliquely incident surface wave of a vortex sheet separating two 
uniform currents is considered. It is shown that the amplitude of the transmitted 
wave as a function of the angle of incidence and current strength is very close 
to that obtained by Longuet-Higgins & Stewart on the assumption of small 
smooth changes in current velocity. The difference is accounted for by a small 
amount of reflexion of the wave by the vortex sheet. It is suggested that, in the 
intermediate range where the change in current velocity over a wavelength is 
comparable with the wave velocity, the wave amplitude of the transmitted wave 
lies between the curves of Longuet-Higgins & Stewart and those found here. 

1. Introduction 
The problem which is considered in this paper is the propagation of a plane 

surface wave across a vortex sheet separating two regions of fluid having different 
uniform velocities U, and U,. The problem is complicated by the free-surface 
condition which has to be satisfied. If the free surface could be replaced by a rigid 
lid, then the problem would reduce to the classical Kelvin-Helmholtz stability 
problem discussed in Lamb (1932, $232). 

The question of the stability of the vortex sheet in the present problem is a 
difficult one. The usual approach is to consider an appropriate initial-value 
problem. Miles (1958) has done this for the problem of the transmission of sound 
waves across a shear layer. He found that, because of sound radiation, fewer 
instabilities occurred at  supersonic speeds. Jones &Morgan (1972) have considered 
the corresponding problem in which one medium contains an acoustic line 
source parallel to the interface. They solved the initial-value problem and showed 
that, in order to satisfy the causality condition, it was necessary to introduce into 
the harmonic solution an additional term which represented a disturbance which 
grew exponentially downstream but which decayed exponentially in the direction 
perpendicular to the vortex sheet. Such a procedure does not appear possible in 
the present case because of the complications introduced by the free-surface 
boundary condition, and even the harmonic problem has not been solved 
explicitly. It is the purpose of this paper to present an approximate solution for 
the harmonic case. 

Although the presence of the free surface precludes a solution with the simple 
structure of the classical Kelvin-Helmholtz instability it seems likely that 
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instabilities must occur in the sheet a t  depths a t  which the influence of the free 
surface is negligible. However it is possible, by analogy with the acoustic case, 
that surface wave radiation from the vortex sheet could have a stabilizing 
influence. 

I n  the present work we shall consider only the simplest problem of a plane 
wave obliquely incident upon the vortex sheet and we shall assume that all 
disturbances are time-harmonic and small enough for the linearized theory to 
hold, so that instabilities are excluded. 

On the experimental side, Savitsky’s (1970) investigation of the interactions 
of waves and turbulence showed that even small mean currents had a greater 
effect on an incident wave than the turbulence which he generated. Thus it 
seems likely that any turbulence generated by a shear layer will have a smaller 
influence than the mean velocity gradients in the flow. Hence the present idealized 
model of the flow may be a good representation of some physical situations. 

Previous work on the water-wave case includes that of Johnson (1947), who 
determined the changes in wavelength and direction of the waves from largely 
kinematic considerations, but who derived expressions for the change in wave 
height from energy considerations based only the far field with no attempt to  
match the near field across the interface. More recently, Maruo & Hayasaki 
(1972), who were interested in the propagation of waves through a ship’s wake, 
have used a Green’s function technique to solve the full problem including the 
matching of the near field across the vortex sheet. Unfortunately one of the 
boundary conditions across the sheet (their equation 2 )  is incorrect and this 
invalidates their results. The method used here to formulate the problem involves 
the use of complete eigenfunction expansions and is equivalent to the Green’s 
function approach of Maruo & Hayasaki. However, whereas they attempted a full 
numerical solution to the resulting integral equations, a simpler but accurate 
approximate method is used here. 

The main aim of the present work is to compare the results with these obtained 
by Longuet-Higgins & Stewart (1961, hereafter denoted by I). They used the 
concept of radiation stress introduced in a previous paper (Longuet-Higgins & 
Stewart 1960) to consider the changes in wave amplitude of a surface wave as it 
propagated across a region of current shear. They used a ray-theory approxi- 
mation which was valid provided that the current varied slowly and smoothly on 
a scale of several wavelengths. I n  their case the amount of wave energy reflected 
was exponentially small and a nonlinear coupling produced a transfer of energy 
between the waves and the current. The model used here can be regarded as the 
first approximation in a perturbation scheme based on the contrary assumption 
that the current varies rapidly on a scale much shorter than a wavelength. 

The results are contained in figures 1 and 2, where it can be seen that the sharp 
change in current speed results in a surprisingly small amount of reflexion lB1l of 
the incident wave. Figure 1 shows how close the curves of the transmission 
coefficients ITl/ vs. current speed are to the results in I. This suggests that in the 
intermediate range, where the current speed varies appreciably over a wavelength 
and where neither theory is applicable, the curves of transmitted wave height 
lie between those shown in figure 1. 
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FIGURE 1. A comparison of the modulus IT,1 of the transmission coefficient derived from 
the approximation based on the velocity formulation (solid lines) with that obtained by 
Longuet-Higgins & Stewart (dashed lines). 
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FIGURE 2. A comparison of the modulus lRll of the reflexion coefficient derived from the 
approximation based on the velocity formulation (solid lines) with that based on the 
potential formulation (dashed lines). 



392 D. V .  Evans 

A simpler problem having an exact solution for IBII and is considered in 
the final section and a comparison is made between the present approximation 
and the simpler exact results derived by Keller & Weitz (1953). The agreement is 
shown to be good over a wide range of the parameters of the problem. 

2. Formulation 
Axes are chosen such that the x, z plane is the undisturbed free surface and y 

points vertically downwards. It is assumed that uniform flows with constant 
velocities U, and U,, in the z direction, exist in x< 0, respectively. The final 
solution will depend only on the relative velocity U, - U,. However, there is some 
advantage to be gained in terms of symmetry and notational convenience by 
retaining the separate indentities of U, and U, a t  this stage. The fluid is assumed 
to be incompressible and irrotational so that a, velocity potential @(x, y, z, t )  
satisfying Laplace's equation in the fluid exists. The pressure in the fluid is 
given by Bernoulli's equation 

where p is the fluid density, g the acceleration due to gravity and P(t) a function 
of time only. 

24x9 y, z, t )  +p{a@/at - 9Y + 4(v@)2) = F(t), 

Let 

where 6, and $, are perturbation potentials, and let the perturbed free surface 
have the equation y = ~ ( x ,  z, t). Then the continuity of pressure across the free 
surface gives, to first order in 9, and 7, 

y = o  

whilst the condition that a fluid particle remains on the free surface, also to first 
order in $m and 7, is 

- W r n  =-+urn- 87 '7 y = 0 (m = 1,2). 
aY i at az 9 

Elimination of 7 between (2.2) and (2.3) gives 

(g+Urng)'$rn = 9- y = 0 (m = 1,2). 
ay ' (2.4) 

In  the perturbed motion, the equation of the interface separating the uniform 
flows is assumed to be x = $(y, z, t ) .  Equations relating and $2 across the vortex 
sheet are obtained by applying the condition of continuity of pressure across the 
sheet and the condition that a fluid particle remains on the sheet. We find that 
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both equations being satisfied to fist order in $, and 5. We shall not consider the 
question of Kelvin-Helmholtz instabilities occurring in the vortex sheet. It will 
be assumed that throughout the motion the perturbations in the sheet are such 
that (2.5) and (2.6) continue to hold. Elimination of $ from (2.6) gives 

In  addition the perturbation potentials satisfy Laplace's equation throughout 
the fluid. 

We shall assume that a sinusoidal wave motion exists in the sheet, having 
frequency w and wavenumber p .  It follows from (2.6) that we must have 

$m(x, ?/, 2, t )  $m(x, ~ ) e x p ( @ z - i ~ t )  (m = -1, 2), (2.8) 

(V2-p2)#,  = 0 (m = 1, 2, V2 = a2/ax2+a2/ay2) (2.9) 

K,,#,+a#,/ay = 0, y = 0, --oo < x COO (m = 1,2) ,  (2.10) 

a,$1= %#2, x = 0, y > 0, (2.11) 

a,la$,/aX = a;la$,/ax, x = 0, y > 0, (2.12) 

where the real part is to be taken finally. Then $,(x, y) satisfies 

throughout the fluid, 

where a, = KA = l+pu,l/gS. (2.13) 

We shall be concerned with the propagation of an obliquely incident wave 
across the vortex sheet. Let the angle between the crests of the wave and the 

. z axis in x 0 be 0, and 8, respectively. In  what follows we use :a notation similar 
to that of Miles (1967). We can construct complete eigenfunction expansions in 
x z  0 which satisfy (2.9) and (2.10) .Thus 

$ m ( ~ ,  y) = sgnx (A,e-iblzl +B,ei"m'"l)x,(y) 

+Joa C,(k) e-k'lsl $,@, k)dk)  (m = 1, 2), (2.14) 

where 1, = K, cos 0, and k' = (k2  +p2)3, so that p = K, sin 0, (m = 1, 2). The 

1 

functions 

and 

satisfy the orthonormality conditions 

$m(y, k) = (2/n)t(k2+ K&)-t(K, sin ky - k cos ky) 

(2.15) 

Now from (2.14) 
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so that from (2.15) 

An integral equation for @m(y) is now obtained by applying conditions (2.11) 
and (2.12)-(2.14), using (2.16). Thus 

where 

and 

At this stage it is convenient to introduce matrix notation. We define 

6 l @ l ( Y )  = az1@2(y) = @(Y) 

G(y, t )  = i Irn a%4k!/, k) @&, k) k'-ldk. (2.18) 
m = l  0 

AT = (4, A2), BT = (Bl, &),  dT = ( d l , d , )  = ("1x1, a2x.J 

and 1 = diag{Z,, Z 2 } .  
Then (2.16) and (2.17) become 

-i l(A-B) = d@(t)dt, (2.19) 
!Om 

dT(A + B) = sorn @(t) G(y, t )  dt. (2.20) 

Following Miles (1967) we define the scattering matrix S by 

l(A - B) = iS(A + B). (2.21) 

Then the waves a t  either infinity are related by 

where 
B = TA, (2.22) 

T = (l+iS)-'(I-iS). (2.23) 

If we now introduce a normalized velocity u(y) defined by 

we obtain 
@(Y) = UT(Y) (A + B), (2.24) 

(2.26) 

The problem has been reduced to the solution of the two singular integral 
equations given by (2.25). Once these have been solved for u(y), the matrix S 
may be determined from (2.26) and the wave amplitudes a t  either infinity may 
be related to the amplitude of the incident wave using (2.2), (2.8), (2.22) and 
(2.23). Thus the wave amplitude a t  either infinity is given by 

Re { - ig-*a,$,(x, 0) exp [ i(p - ot)]} (m = 1, 2). (2.27) 
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It is possible to obtain useful information about the solution before actually 
solving for u(y). We shall define the complex transmission coefficient TI (T,) to 
be the ratio of the complex amplitude (2.27) of the transmitted wave at x = -GO 

(+a) to that of the incident wave at  x = +a ( -a). The complex reflexion 
coefficients R, and R, will be defined correspondingly. Then it follows from (2.14), 
(2.22) and (2.27) that with A, = 0 

(2.28) 

(2.29) 

where ,u = K1/K,. Also from (2.23) we can derive the results 

argT, = argT,, IRII = IRzl, 4T12 = z2T2,, 

cos e2 T1 = cos el T,, giving 

and also I R, I + (sin 2B,/sin 20,) I T, I = 1. (2.30) 

This last result can also be derived from a simple application of Green’s theorem 
to $m and its complex conjugate. 

Equation (2.30) merits further discussion since it is not equivalent to a straight- 
forward energy balance across the vortex sheet. It has been pointed out by 
Whitham (1962) that in a linearized problem of the type considered here, where 
the currents are prescribed beforehand to first order, any second-order mean 
currents induced by the waves may introduce spurious terms in an energy 
equation based on physical considerations. The correct interpretation of (2.30) 
is that of conservation of wave action, defined as energy flux divided by intrinsic 
frequency, the latter being the frequency measured by an observer travelling 
with the flow. 

Although conservation of wave action is more usually associated with problems 
involving slowly varying wave trains, support for the above result in the present 
problem, where an abrupt change in current speed occurs, can be found in the 
work of Hayes (1970). He showed that, for a wide class of systems having a 
Lagrangian density and with periodic solutions, wave action was conserved with 
no requirement that a parameter be small. 

The result in I, equation (8.16), for the amplification of short waves as they 
traverse a slowly varying current, can also be interpreted as conservation of 
wave action and the result is identical to (2.30) if R, is put equal to zero. 

3. An approximate solution 
There can be little hope of inverting (2.25) explicitly. Here we shall employ a 

two-term Galerkin approximation using exponentials appropriate to either 
side of the vortex sheet. Thus we shall assume that 

where the c,, are constants. 
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We substitute ( 3 . 1 )  into (2 .25) ,  multiply by d,(y) and integrate from 0 to co. 
We find, in matrix notation, that F = CE, where F = { fmn} ,  E = {emn}, C = {cmn} 
and 

( 3 . 2 )  

( 3 . 3 )  

(m = 1, 2).  

( 3 . 4 )  

1 
m 

f m n  = fnm = j dm(y)dn(y)  dy 
0 

em, - - enm = som som d m ( t )  d,(y) ~ ( y ,  t )  dtdy 

Furthermore the approximation to S from ( 2 . 2 6 )  is S N Sv = CF, whence 

and Sv is symmetric. 
An alternative formulation and approximate solution to the problem are 

possible using the potential across x = 0 instead of the horizontal velocity as the 
unknown. Analysis similar to that leading to ( 2 . 2 5 )  and ( 2 . 2 6 )  gives S 2: 9, 
where 

Sv = FE-lF 

SP = L-1KL-1 ( 3 . 5 )  
and 

2 f m  

and hT(y) = (hl, h,) = (a,lx1, - a , 2 x z ) .  

Once Sv and S p  have been computed we can relate the far-field properties of 
the solution through ( 2 . 2 2 )  and ( 2 . 2 3 ) .  

The integrals occurring in ( 3 . 2 ) ,  ( 3 . 3 ) ,  ( 3 . 6 )  and ( 3 . 7 )  may all be worked out 
explicitly, and from ( 3 . 4 )  and ( 3 . 5 ) ,  without too much trouble, we find for the 
velocity approximation 

Syl = Avp + B"C2, Sg2 = AvC2 + B"/,u, 
fly2 = Sil = (Avp  + Bv)C/p*, 

where A" = *7TK2p(1 +pu)2/{(N,-N2)~2+(1--llL2)Hl}, ( 3 . 8 ~ )  

( 3 . 8 b )  Bv = $7~&(1 +,~)~/{M2-M1)-(1 -p2)H2), 

c = 2 p w  +PI, ,U = Kl/& 
and N, = sec8,logcot&8,, H, = i(1-M,sin28,) (n = 1, 2 ) .  

In  the potential approximation we find that the Sgn can be expressed in a 
similar way with Av and Bv replaced by Ap and Bp, where 

Ap = (4/n)K2p(l + ~ ) ~ ( 1  -p) -4{~~~282M2-co~281M1-  (1 -p2)Ll},  ( 3 . 9 ~ )  

B' = (4/77)&(1+,~)~(1 - ~ ) - 4 { ~ 2 ( ~ ~ ~ 2 8 e , M l - ~ ~ ~ 2 8 2 M 2 )  + (1 - - ,LL~)L~) ,  ( 3 . 9 b )  

L, = $(I +M,sin28,) (n = 1, 2 ) .  



Water waves across a vortex sheet 397 

could be shown to be 
upper and lower bounds respectively to the true value of S,,, but this is only 
possible for m = n (see Jones (1964, p. 271) for a proof in this case). In  any event 
complementary bounds on S,, do not give corresponding bounds on T,, because 
of the complicated relation between S and T. 

In  computing reflexion and transmission coefficients, we shall, without loss of 
generality, assume that the incident wave is propagating from x = +a in an 
otherwise stationary fluid. This is equivalent to applying a Galilean transforma- 
tion of co-ordinates in z and t. Then U, = 0 and there can be no incoming wave 
at x = -00, so that A, = 0. 

We find from (2.13) that 

It had been hoped that the expressions for Sgn and 

sin 8, = sin el/( 1 - p sin el),, (3.10) 

where p = UJc, and the relation c, = w/K, has been used, c1 (c,) being the phase 
velocity of waves in x > 0 ( < 0). For a given 8, in the interval (0, ti.) equation 
(3.10) has a solution for 8, for all /3 lying outside the range 

[ 1 - (sin 8,)+]/ sin 8, < p < [ 1 + (sin B,)+]/sin 8,. (3.1111 

Furthermore, to each solution 8, correspond two values of j3, both positive. 
So from (3.10) the effect of an opposing current (p < 0) on an obliquely incident 
wave is to reduce the angle between the crests and the positive z axis. For positive 
currents (p > 0) the angle increases up to in when ,8 reaches the value 

[ 1 - (sin 8,)+]/ sin 8,. 

For larger values of total reflexion occurs and no wave propagates across the 
current until p reaches the value [ 1 +  (sin8,)*]/sin8,. For p greater than this 
value transmission occurs once more and the angle increases from in to i. as j3 
increases indefinitely. This can be explained physically as follows. Up to a 
certain value of p it is possible to match the frequency and phase speed of a wave 
incident upon a weak positive current with a longer wave propagating down the 
current. As the strength of the current increases, matching becomes impossible 
and total reflexion occurs. For very strong positive currents it is possible to 
match the incident wave with a wave which is trying to propagate up the current 
but which is being swept back by the current, the sense of its phase speed thus 
being reversed. It is remarkable that for p = 2/sin8, the incident wave alone 
provides a complete solution to the problem.$ Once 8, (and hence p from the 
relation psin8, = sine,) has been determined from (3.10)) the transmission and 
reflexion coefficients T, and R, may be computed from (2.23), (2.28) and the 
approximate expressions SV and S p .  It also follows from the above discussion 
that curves of IRII and (Tl( us. p are necessarily symmetric about the line 
p = cosec8,. 

-f The left-hand half of this inequality was noted by Longuet-Higas & Stewart (1961, 
equation (8. lo)), but they appear to have overlooked the possibility of further transmission 
for larger values of p. 

$ I am indebted to Dr D. H. Peregrine for this observation. 
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4. Discussion of results 
Figure 1 shows how the ratio of the amplitudes of the transmitted and incident 

waves obtained by computing 1 Tll using the approximation based on the velocity 
formulation varies with the strength /3 ( =  U,/c,) of the current for differing 
angles of incidence O1 of the incoming wave. The corresponding curves derived 
from the approximation based on the potential formulation are not shown as 
they coincide with the curves shown over almost the entire range of /3 covered. 
The difference between the two approximate values for ITII increases with 
increasing 8, and 1/31. Thus in the range - 3 < /3 < 2 the greatest difference 
occurs a t  /3 = - 3, where we find a difference of 0.04 % of the smaller value for 
8, = 15", increasing to 3.2% for 8, = 75". This near coincidence of the two 
approximations to ITII makes it reasonable to  suppose that the true curves for 
ITl\ coincide with the curves shown within the limits given above. 

Also shown in figure 1 are the corresponding curves obtained in I on the 
assumption that changes in current velocity over a wavelength are small com- 
pared with the wave velocity. I n  I the exact result 1 TII = (sin 28,/sin 28,)t was 
derived, with no reflexion of the incident wave, there being a transfer of energy 
between the waves and the current proportional to the radiation stress tensor. 
The concept of radiation stress was introduced in a previous paper by the same 
authors (Longuet-Higgins & Stewart 1960). I n  the present work i t  has been 
assumed that the change in current velocity from U, to U, occurs over a distance 
which is small compared with a wavelength, giving rise in the limit to a vortex 
sheet along x = 0, y > 0. 

The most remarkable feature of the curves is the similarity, both qualitative 
and quantitative, between the results of I and the present work, especially in 
view of the marked difference in the assumptions made in deriving the mathe- 
matical models used in each case. It can be seen that the present amount of 
wave transmission is always slightly less than that given by the results of I. 
This is due to the small amount of wave energy reflected by the current; no 
reflexion of the wave occurred in I. The only other difference in the two sets of 
curves occurs near the critical value /3 = /3crit = [l - (sin B,)*]/sin 8,. I n  I the 
theory predicts IT,] +co as / 3+Pcr i t  whereas it can be shown that the present 
velocity approximation predicts that  ITl\ -+ 1 +sin 61 as /3+/3crft. The present 
potential approximation gives a limit for IT,] which is also finite but different 
and more complicated. It is not clear what the true value for IT,] is in this 
limiting case, which appears to be a non-trivial problem in its own right. 

I n  figure 2 curves of IR,] us. /3 are shown for a range of values of 8,. Here both 
the velocity and potential approximations are given and we see that the dis- 
crepancy between them is magnified for large 8, and 1/31. This can be explained 
from (2.30) as follows. I n  an obvious notation, if 

then 
sin28, 
sin 28, I R, I &=--- 2 e  approximately. 
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Since is small, (4.1) shows how a small e can lead to a large 6. Even so, in 
the range I,8I < 1, which is perhaps that of greatest physical interest, the curves 
are very close together and it may be reasonably assumed that the approxima- 
tions are very close to the true values. It is noticeable that for smaller incidence 
angles the amount of reflexion decreases monotonically to zero as the strength of 
the opposing current (,8 < 0) diminishes to zero. For larger values of 8, the 
reflexion first increases to a maximum value before falling to zero at  /? = 0. 
For example for a wave whose crests make an angle of 75" with the positive 
direction of the current, a maximum of about 25 % of the wave energy is reflected 
by a negative current whose velocity is about 60 yo of the incident wave velocity. 
For positive currents (,8 > 0) the amount of reflexion increases sharply until the 
critical value jlcrit is reached, where total reflexion occurs. As has already been 
mentioned, in both figures 1 and 2 the curves are symmetrical about the line 
,8 = cosec8,. 

5. A simpler problem 
It is possible to make a partial check on the accuracy of the approximations 

by comparing the results obtained for a simpler problem with the known exact 
solution for that problem. If in (2.11) and (2.12) we put a, = a2, so that the 
perturbed potential and horizontal velocity in the x direction are continuous 
across x = 0, whilst a t  the same time keeping Kl different from K,, we obtain 
the boundary-value problem solved by Weitz & Keller (1950). Unlike the present 
problem, this simpler problem may be solved exactly using the Weiner-Hopf 
technique. Furthermore, it was remarked by Keller & Weitz (1953) in a subse- 
quent paper that a simple expression exists for lRll, namely, 

where ,u = K,/K2 = sin02/sin8, as before. Keller & Weitz were concerned with 
the propagation of an obliquely incident wave into an ice field in the form of 
small non-interacting floating masses. Then for ,u < 1 the wave propagates into 
the ice field whilst for ,u > 1 the wave propagates out of the ice field and total 
reflexion occurs for ,u > ,ucrit = cosec8,. The result (5.1) can be compared with 
an approximate solution for the ice problem obtained by putting a, = a2 = 1 
in the expressions for lRll derived for the shear problem. In turns out that the 
only modification required is the replacement of ,u in the expressions for 82: by 
unity. The case of normal incidence, which is possible in the ice problem, requires 
special attention. It is found that if = 0 then O2 = 0 and the expressions in 
curly brackets in ( 3 . 8 ~ ~ )  and (3.9a) each become 2,u21ogp+ 1 -,u2, whilst the 
expressions in curly brackets in (3 .8b)  and ( 3 . 9 ~ ~ )  each become ,u2--1og,u- 1. 
Some care is needed in deriving the transmission coefficient in the ice problem, 
since the wave amplitude in the ice is given by 

Re {( - iK2/w) $&, 0) exp i (pz  - wt)> 
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P 

0.5 
0.9 
2.0 
3.0 
4.0 

el = o 0.1 

el = 300 0.1 
0.5 
0.9 
2.ot 

8, = 60" 0.1 
0.5 
1-155f 

Velocity 
approxi- 
mation 

6.0387 
1.8862 
1.1095 
0.4716 
0.2895 
0.2015 

5.2288 
1.7485 
1.0917 
0.7072 

3.1094 
1.2285 
1-6111 

Potential Exact Velocity 
approxi- 
mation 

6.0386 
1.8862 
1.1095 
0.4716 
0.2895 
0.2015 

5.2938 
1.7488 
1.0917 
0.7075 

3.1666 
1-2288 
1.6111 

value approxi- 
from (5.2) mation 

5.7462 0.7966 
1-8853 0.3319 
1.1095 0-0526 
0.4714 0.3320 
0.2887 0.4955 
0*2000 0.5920 

5.0465 0.8274 
1.7481 0.3814 
1.0917 0.0679 
0.7071 1.0000 

3.0225 0.8985 
1.2283 0.5655 
1.611 1 1.0000 

t P = Pwitn 

TABLE 1 

Potential Exact 
approxi- 
mation 

0.7966 
0.3319 
0-0526 
0.3320 
0.4955 
0,5920 

0.8227 
0.3810 
0.0679 
1-0000 

0.8945 
0-5652 
1~0000 

value 
from (5.1) 

0.8182 
0.3333 
0.0526 
0.3333 
0.5000 
0.6000 

0.8404 
0.3820 
0.0679 
1*0000 

0.9044 
0.5657 
1-0000 

and not, as in the shear problem, by (2.27). Thus we find that for the ice problem 

(5 .2)  plI = 2 cos e,/(cos e, +p cos el)pi 

since IRII + (p sin 28,/sin 26,)lT11 = 1 (5.3) 
in this case. 

Table 1 compares the values of lRll and IT,] computed from the velocity and 
potential approximations with the exact values given by (5.1) and (5.2). It can 
be seen that there is good agreement for all except small p. Closest agreement 
occurs near p = 1, where the exponential forms assumed in the approximations 
are almost exact and local effects are small. 

6.  Conclusion 
Two approximate methods have been used to determine how an obliquely 

incident plane wave is affected by a vortex sheet separating two regions of fluid 
having constant but different velocities. The results are shown to be similar to 
results obtained by Longuet-Higgins & Stewart (1961), who assumed a gradual 
change in current velocity. This suggests that in the intermediate range, where 
the change in current velocity over a wavelength is comparable with the wave 
velocity and for which no theory has been devised, the curves of the reflexion 
and transmission coefficients lie between those given in I and those derived here. 
Confidence in the two approximations is strengthened by a favourable comparison 
between the approximations for a simpler problem and the known exact result 
for that problem. 

I should like to thank my colleague Dr D. H. Peregrine for bringing this 
problem to my attention and for numerous useful discussions since. 
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